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Abstract

The paper presents analytical solutions for the flow and heat transfer in a steady laminar boundary flow of an

electrically conducting fluid of second grade subject to a transverse uniform magnetic field past a semi-infinite stretching

sheet with power-law surface temperature or power-law surface heat flux. The effects of viscous dissipation, internal

heat generation or absorption, work done due to deformation and Joule heating are considered in the energy equation.

The variations of surface temperature gradient for the prescribed surface temperature (PST case) and surface tem-

perature for the prescribed surface heat flux (PHF case) with various parameters are graphed and tabulated.

Asymptotic solutions of the temperature for large Prandtl number are also given for two heating conditions. The

inclusion of the Joule heating has a significant influence on the thermal characteristics at the wall especially when the

Eckert number, magnetic parameter as well as the Prandtl number are large. When the Eckert number is large enough,

the heat may flow from the fluid region to the wall in contrast to that when Eckert number is small. A physical

explanation is proposed for this phenomenon.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Second grade fluid; Stretching sheet; Boundary layer flow; Magnetic field
1. Introduction

The study of laminar boundary layer flow over a

stretching sheet has received considerable attention in

the past, for example, materials manufactured by

extrusion process and heat-treated materials traveling

between a feed roll and a wind-up roll or on conveyor

belts possess the features of a moving continuous sur-

face. In view of these applications, Sakiadis [1] initiated

the study of boundary layer flow over a continuous solid

surface moving with constant speed and then extended

to stretching sheet by Crane [2]. Following them, Gupta

and Gupta [3] examined the heat and mass transfer using
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a similarity transformation for the boundary layer flow

over a stretching sheet subject to suction or blowing.

The effects of power law surface temperature and power

law surface heat flux on the heat transfer characteristics

of a continuous, stretching surface with suction or

blowing were investigated by Chen and Char [4]. How-

ever, above researches are restricted to flows of New-

tonian fluids.

Many materials such as polymer solutions or melts,

drilling mud, clastomers, certain oils and greases and

many other emulsions are classified as non-Newtonian

fluids. There are many models describing the properties,

but not all, of non-Newtonian fluids. These models or

constitutive equations, however, cannot describe all the

behaviors of these non-Newtonian fluids, for example,

normal stress differences, shearing thinning or shearing

thickening, stress relaxation, elastic effects and memory
ed.
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Nomenclature

ðaÞn symbol in Eq. (22)

A proportional constant

A1, A2 first and second Rivlin–Ericksen tensors

ðbÞn symbol in Eq. (22)

B proportional constant

B0 component of magnetic field

B magnetic field vector

cp specific heat at constant pressure

cf skin friction coefficient

D proportional constant

Ec Eckert number

f dimensionless velocity

g dimensionless temperature in PHF case

k thermal conductivity

K viscoelastic parameter

l characteristic length

L ¼rV

m combined parameter

Mn magnetic parameter

Mða; b; zÞ Kummer’s function

Nu Nusselt number

p pressure/parameter in Eq. (22)

Pr Prandtl number

q internal heat source or absorption

Q parameter in Eq. (22)

r parameter

Re Reynolds number

s parameter in Eq. (22)

T temperature

T1 ambient temperature

Tw wall temperature

T Cauchy stress tensor

u, v velocity component in the x and y directions

V velocity vector

x, y coordinates

Greek symbols

a dimensionless internal parameter

a1, a2 material constants

dT thermal boundary layer thickness

/ dimensionless temperature

U dimensionless temperature

g dimensionless coordinate

l dynamic viscosity

m kinematic viscosity

h dimensionless temperature in PST case

q density

n dimensionless coordinate

f dimensionless coordinate
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effects, etc. Among these models, the fluid of differential

type, for example, fluids of second grade and third

grade, have been received much attention in the past due

to their elegance and simplicity [5].

Recently, the studies of boundary layer flow of non-

Newtonian fluids over a stretching sheet become more

importantly because of industrial applications. Fox et al.

[6] used both exact and approximate methods to exam-

ine the boundary layer flow of a viscoelastic fluid char-

acterized by a power law model. Vajravelu and Rollins

[7] investigated the heat transfer of the boundary layer

flow of a second grade fluid whose constitutive equation

is given by

T ¼ �pIþ lA1 þ a1A2 þ a2A
2
1: ð1Þ

Here T is the Cauchy stress tensor, p is the indeterminate

pressure constrained by the incompressibility, l is the

viscosity, a1 and a2 are the moduli of the viscoelastic

fluid, and A1 and A2 are the first two Rivlin–Ericksen

tensors defined by [8]

A1 ¼ Lþ LT;

A2 ¼
dA1

dt
þ A1Lþ LTA1; ð2Þ
where d=dt is the material derivative and L ¼ rV. If the

fluid of second grade is to satisfy the Clausius–Dehum

inequality for all motions and the assumption that the

specific Helmholtz free energy of the fluid is a minimum

when it is locally at rest, then the requirements for the

moduli of the second grade fluid are

lP 0; a1 > 0 and a1 þ a2 ¼ 0: ð3Þ

Though the sign of a1 has been a subject of much con-

troversy. We do not intend to discuss it since a critical

review of Dunn and Rajagopal [5] has already given a

concise discussion about this issue. The fluids of second

grade with negative a1 may result in a physically

impossible flow situation, which is not compatible with

the stability criteria, however, solutions exist for a

variety of flows when a1 is taken to be positive. Vajra-

velu and Rollins [7] used the negative sign for a1 in the

stretching problem of a viscoelastic fluid, the Walters’ B

liquid, without considering the deformation work in the

energy equation, however, a positive a1 is chosen for the

same problem of a second grade fluid including the work

done due to deformation [9].

If the second grade fluid is electrically conducting, the

Lorentz force J� B, where J is the electrical current and
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B is the magnetic field, must be included in the

momentum equation when a transverse uniform mag-

netic field B ¼ ð0;B0; 0Þ is applied to the fluid layer. The

terms due to Lorentz force can be simplified if the fol-

lowing assumptions are made: (i) All physical quantities

are constant; (ii) the magnetic field B is perpendicular to

the velocity V and the induced magnetic field is small

compared with the applied magnetic field; (iii) the elec-

trical field is assumed to be zero. These assumptions are

valid when the magnetic Reynolds number is small and

there is no displacement current [10]. Thus, in the

boundary layer approximation the Lorentz force is

simply the term �rB2
0u, where r is the electrical con-

ductivity, B0 is the uniform magnetic field in the y-
direction, and u is the x-component of velocity V. The

flow problem of non-Newtonian fluids, characterized by

Bingham plastic and the power law models, in a mag-

netic field has been investigated by Sarpkaya [11].

Sarpkaya also pointed out that some non-Newtonian

fluids such as nuclear fuel slurries, liquid metals, mer-

cury amalgams, biological fluids, plastic extrusions,

paper coating, lubrication oils and greases, have appli-

cations in many areas in the absence as well as in the

presence of a magnetic field. Char [12] studied the heat

and mass transfer in a hydromagnetic flow of a visco-

elastic fluid, the Walters’ B liquid, over a stretching

sheet, however, only the thermal diffusion is considered

in the energy equation.

Motivated by the possible industrial applications

and previous studies regarding the flow and heat

transfer of non-Newtonian fluids over the stretching

sheet, we present analytical solutions for flow and heat

transfer of a laminar boundary layer flow of an elec-

trically conducting second grade fluid subject to a

transverse uniform magnetic field over a stretching

sheet with prescribed power-law surface temperature

and prescribed power-law surface heat flux. Here the

viscoelastic modulus a1 of the second grade fluid is

taken to be positive to satisfy thermodynamic restric-

tions Eq. (3). The energy equation we considered

includes the viscous dissipation, work due to defor-

mation, internal heat generation or absorption, and

the Joule heating. Although Sarma and Rao [13]

solved the relevant problem analytically for a visco-

elastic fluid with a1 < 0, they do not consider an

electrically conducting fluid so as not to include the

effects of the magnetic field, for example, the Lorentz

force in the momentum equation and the Joule heating

in the energy equation. Here we adopt their solutions

only with minor modification to solve the problem in

which we are interested. Also asymptotic solutions for

the temperature function are given when the Prandtl

number is large. The effects of the inclusion of the

Joule heating, Eckert number and the Prandtl number

on the thermal characteristics at the wall are examined

in details.
2. Formulation and solutions

Consider an incompressible, electrically conducting

fluid of second-grade, obeying Eqs. (1) and (2) with

a1 > 0, subject to a transverse uniform magnetic field

over a semi-infinite stretching sheet with the plane y ¼ 0,

then the fluid occupies above the sheet y > 0. Two equal

and opposite forces are introduced along the x-axis so

that the sheet is stretched keeping the origin fixed. In the

assumptions of boundary layer flow, the governing

equations are

ou
ox

þ ov
oy

¼ 0; ð4Þ

u
ou
ox

þ v
ov
oy

¼ v
o2u
oy2

þ a1
q

o

ox
u
o2u
oy2

� ��
þ ou

oy
o2v
oy2

þ v
o3u
oy3

�
� rB2

0

q
u; ð5Þ

qcp u
oT
ox

�
þ v

oT
oy

�
¼ k

o2T
oy2

þ l
ou
oy

� �2

þ a1
ou
oy

o

oy
u
ou
ox

�
þ v

ov
oy

�
þ qðT � T1Þ þ rB2

0u
2; ð6Þ

where u and v are velocity components, T is the tem-

perature, T1 is the temperature of the ambient fluid, q is

the density, q is the specific heat generation rate, v ¼ l=q
is kinematic viscosity, k is the conductivity and cp is the
specific heat at constant pressure. In deriving (5) and (6)

it is assumed that the contribution due to the normal

stress is of the same order of magnitude as that due to

the shear stress. The last term in (5) is the Lorentz force

and the last three terms in (6) are work done due to

deformation, internal heat generation or absorption and

the Joule heating. We assumed that the gravity force is

neglected and the modified pressure gradient is absent

since the flow is driven by the stretching sheet.

The appropriate boundary conditions for velocity

field are

u ¼ Bx; v ¼ 0 at y ¼ 0; B > 0;

u ! 0; ou=oy ! 0 at y ! 1: ð7Þ

It has been implicitly assumed that the diffusion rate at

the stretching sheet results in a negligible normal

velocity v. Besides, the condition ou=oy ! 0 at y ! 1, is

the augmented condition, which has been discussed by

Garg and Rajagopal [14], solving a flow problem via a

singular perturbation technique.

The thermal boundary conditions for the energy

equation (6) are

PST case : T ¼ Tw ¼ T1 þ A
x
l

� �2

at y ¼ 0;
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PHF case : qw ¼ �k
oT
oy

¼ D
x
l

� �2

at y ¼ 0;

T ! T1 as y ! 1; ð8Þ

where A and D are constants, l is the characteristic

length, qw is the wall heat flux.

A similarity solution for velocity exists if we intro-

duce a transformation

u ¼ Bxf 0ðgÞ; v ¼ �ðBmÞ1=2f ðgÞ; g ¼ ðB=mÞ1=2y; ð9Þ

where a prime denotes the differentiation with respect to

g. Apparently (9) has already satisfied the continuity

equation (4). Substituting (9) into (5), we have

f 02 � ff 00 ¼ f 000 þ Kð2f 0f 000 � f 002 � ff IV Þ �Mnf 0; ð10Þ

where K ¼ a1B=l is the viscoelastic parameter and

Mn ¼ rB2
0=qB is the magnetic parameter. When

Mn ¼ 0, (10) reduces to the problem without the mag-

netic field. We note that (10) is exactly the same as that

of (2) in Subhas and Veena [15], which discussed a sat-

urated viscoelastic fluid of porous medium over a

stretching sheet, provided that K and Mn are replaced

by �K1, and K2, respectively.

The corresponding boundary conditions (7) become

f ¼ 0; f 0 ¼ 1 at g ¼ 0;

f 0 ! 0; f 00 ! 0; at g ! 1:
ð11Þ

An exact solution to (10) and (11), following the pro-

cedure of Troy et al. [16], is obtained as

f ðgÞ ¼ 1

m
ð1� e�mgÞ ð12Þ

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þMnÞ=ð1þ KÞ

p
is a combined para-

meter relating the effects of viscoelasticity of the second

grade fluid and the magnetic field.

The velocity components are given by

u ¼ Bxe�mg

v ¼ �ðBvÞ1=2ð1� e�mgÞ=m:
ð13Þ

Since we have discarded the possibility of negative value

of a1, thus the solution of exponential type (12), corre-

sponding to positive a1 or K, is the only solution which

is physically possible, rather than the new solution dis-

cussed by Chang et al. [17].

The dimensionless shear stress at the stretching sheet

g ¼ 0 is characterized by the skin friction coefficient cf as

cf ¼
T12ð0Þ
qu2w=2

¼ 2

Re1=2
ð1þ 3KÞf 00ð0Þ; ð14Þ

where Re ¼ Bx2=m is the local Reynolds number and the

dimensionless velocity gradient at the wall is given by

f 00ð0Þ ¼ �m: ð15Þ
2.1. The prescribed surface temperature (PST case)

If we introduce the dimensionless temperature hðgÞ in
the PST case as

hðgÞ ¼ T � T1
Tw � T1

; ð16Þ

and use (9), then the energy equation (6) becomes

h00 þ Prf h0 � Prð2f 0 � aÞh

¼ �PrEc½ðf 00Þ2 þ Kf 00ðf 0f 00 � ff 000Þ þMnðf 0Þ2�; ð17Þ

where a prime denotes differentiation with respect to g,
Pr ¼ lcp=k is the Prandtl number, a ¼ q=Bqcp is the

internal heat parameter and Ec ¼ B2l2=Acp is the Eckert
number.

The corresponding thermal boundary conditions are

h ¼ 1 at g ¼ 0;

h ! 0 as g ! 1:
ð18Þ

Substituting (12) into (17) and (18) and introducing the

transformation n ¼ �re�mg with r ¼ Pr=m2, we have

n
d2h

dn2
þ ð1� r � nÞdh

dn
þ 2

�
þ ar

n

�
h

¼ �PrEc 1

�
þ K þMn

m2

�
n
r2
; ð19Þ

and

hð�rÞ ¼ 1 and hð0�Þ ¼ 0: ð20Þ

Eq. (19) can be further transformed into the standard

confluent hypergeometric equation or the Kummer’s

equation [18], the solution satisfies (19) and (20) is given

by

hðnÞ ¼ ð1þ QÞ n
�r

� �p Mðp � 2; sþ 1; nÞ
Mðp � 2; sþ 1;�rÞ � Q

n
�r

� �2

;

ð21Þ

where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 4ar

p
; p ¼ ðr þ sÞ=2;

Q ¼ EcPr½1þ K þMn=m2�
4� 2r þ ar

and

Mða; b; zÞ ¼ 1þ
X1
n¼1

ðaÞn
ðbÞn

zn

n!
is the Kummer0s function;

ðaÞn ¼ aðaþ 1Þðaþ 2Þ � � � ðaþ n� 1Þ;
ðbÞn ¼ bðbþ 1Þðbþ 2Þ � � � ðbþ n� 1Þ:

ð22Þ

When the condition r ! 4=ð2� aÞ is met, the particular

solution in (21) becomes invalid, thus we exclude this



I.-C. Liu / International Journal of Heat and Mass Transfer 47 (2004) 4427–4437 4431
possibility for simplicity. However, the solution in this

situation can be found in Sarma and Rao [13].

The solution (21), in terms of g, is

hðgÞ ¼ ð1þ QÞe�pmg Mðp � 2; sþ 1;�re�mgÞ
Mðp � 2; sþ 1;�rÞ � Qe�2mg;

ð23Þ

and the dimensionless surface temperature gradient at

the wall is

h0ð0Þ ¼ ð1þ QÞm r
p � 2

ðsþ 1Þ
Mðp � 1; sþ 2;�rÞ
Mðp � 2; sþ 1;�rÞ

�
� p

�
þ 2mQ: ð24Þ

The local heat transfer rate at the wall is characterized

by the Nusselt number Nu as

Nu ¼
�k oT

oy jy¼0

kðTw � T1Þ
x ¼ �Re1=2h0ð0Þ: ð25Þ
2.2. The prescribed surface heat flux (PHF case)

For the prescribed surface heat flux (PHF) case, the

dimensionless temperature is defined as

T � T1 ¼ D
k

x
l

� �2 m
B

� �1=2

gðgÞ; ð26Þ

and the corresponding energy equation becomes

g00 þ Pr fg0 � Prð2f 0 � aÞg

¼ �PrEc½f 002 þ Kf 00ðf 0f 00 � ff 000Þ þMnðf 0Þ2�; ð27Þ

where Ec ¼ kB2l2ðB=mÞ1=2=Dcp, which is different from

the Eckert number in the PST case and all other

parameters are the same as before.

Using the same transform n ¼ �re�mg and (12), the

energy equation (27) has the same form as (19) and the

boundary conditions (8b) and (8c) now become

g0ð�rÞ ¼ �1

rm
and gð0�Þ ¼ 0: ð28Þ

The solution satisfies (27) and (28) is given by

gðnÞ ¼ 1

m

�
þ 2Q

�
n
�r

� �p

pMðp
�

� 2; sþ 1;� rÞ

� r
p � 2

sþ 1
Mðp � 1; sþ 2;� rÞ

��1

Mðp � 2; sþ 1; nÞ

� Q
n
�r

� �2

; ð29Þ
or in terms of g as

gðgÞ ¼ �Qe�2mg þ 1

m

�
þ 2Q

�
e�pmg pMðp

�
� 2; sþ 1;� rÞ

� r
p� 2

sþ 1
Mðp� 1; sþ 2;� rÞ

��1

�Mðp� 2; sþ 1;�re�mgÞ: ð30Þ

The wall temperature can be obtained from (26) as

Tw � T1 ¼ D
k

x
l

� �2 m
B

� �1=2

gð0Þ; ð31Þ

where

gð0Þ ¼ �Qþ 1

m

�
þ 2Q

�
Mðp � 2; sþ 1;�rÞ

� pMðp
�

� 2; sþ 1;� rÞ � rðp � 2Þ
sþ 1

� Mðp � 2; sþ 1;� rÞ
��1

; ð32Þ

is the dimensionless wall temperature.
3. Asymptotic analysis

We examine the asymptotic behavior of solutions of

the energy equation when Pr is very large for both the

PST and PHF cases,

(i) The PST case

In the limit Pr ! 1, the energy equation has the

form

hn þ Pr
m
ð1� e�mgÞh0 � Prð2e�mg � aÞh

¼ �PrEc 1

�
þ K þMn

m2

�
m2e�2mg: ð33Þ

Letting / ¼ hþ Qe�2mg, we have

1

Pr
/n þ 1

m
ð1� e�mgÞ/0 � ð2e�mg � aÞ/ ¼ 0: ð34Þ

The corresponding boundary conditions are

/ ¼ 1þ Q at g ¼ 0;

/ ! 0 as g ! 1:
ð35Þ

Since the thermal boundary layer thickness dT is of the

order 1=
ffiffiffiffiffiffi
Re

p ffiffiffiffiffi
Pr

p
, we introduce the coordinate trans-

formation f ¼
ffiffiffiffiffi
Pr

p
g and let U ¼ e�

1
4
f2/, then the energy

equation (34) becomes

d2U

df2
� 1

4
f2

�
þ 5

2
� a

�
U ¼ 0; ð36Þ

and the corresponding boundary conditions are

U ¼ 1þ Q at f ¼ 0;

U ! 0 as f ! 1:
ð37Þ
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In obtaining (36), the standard form of parabolic cyl-

inder equation, the limiting process Pr ! 1 has been

made. The solution to (36) and (37) can be obtained, in

terms of g, as

hðgÞ ¼ �Qe�2mg þ ð1þ QÞe�
Prg2

2 M
3� a
2

;
1

2
;
Prg2

2

� �"

�
ffiffiffiffiffiffiffi
2Pr

p C 4�a
2

� 	
C 3�a

2

� 	 gM 4� a
2

;
3

2
;
Prg2

2

� �#
: ð38Þ

The dimensionless surface temperature gradient is given

by

h0ð0Þ ¼ 2mQ� ð1þ QÞ
ffiffiffiffiffiffiffi
2Pr

p C 4�a
2

� 	
C 3�a

2

� 	 : ð39Þ

Apparently, the combined parameter m has no effect on

the heat transfer rate in the PST case for Pr ! 1 when

the Eckert number Ec vanishes or Q ¼ 0.

(ii) The PHF case

For the limiting case Pr ! 1, we have the solution in

the PHF case as

gðgÞ ¼ �Qe�2mg þ ð1þ 2mQÞe�
Prg2

2

�
ffiffiffiffiffiffiffi
1

2Pr

r
C 3�a

2

� 	
C 4�a

2

� 	M 3� a
2

;
1

2
;
Prg2

2

� �"

� gM
4� a
2

;
3

2
;
Prg2

2

� �#
: ð40Þ

Thus the dimensionless surface temperature can be

obtained as

gð0Þ ¼ �Qþ ð1þ 2mQÞ
ffiffiffiffiffiffiffi
1

2Pr

r
C 3�a

2

� 	
C 4�a

2

� 	 : ð41Þ

Again, as in the PST case, the combined parameter m
has no substantial effect on the surface temperature gð0Þ
in the PHF case when the Eckert number is zero or

Q ¼ 0 for Pr ! 1.
4. Results and discussions

The flow and heat transfer in a laminar flow of an

electrically conducting second grade fluid subject to a

transverse uniform magnetic field over a stretching sheet

with power-law surface temperature and power-law

surface temperature gradient have been examined. The

energy equation includes the viscous dissipation, work

done due to deformation, internal heat generation or

absorption and the Joule heating. The closed form

solutions of the velocity components show that the

combined parameter m depends on the viscoelastic

parameter K of the second grade fluid as well as the
magnetic parameter Mn. In Fig. 1(a) and (b), we plot the

dimensionless velocity component f 0ðgÞ as a function of

g for several values of viscoelastic parameter K and

magnetic parameter Mn, respectively. It can be observed

that f 0ðgÞ decreases with g for both K and Mn keeping

constant. For a fixed position g, f 0ðgÞ increases with K
but decreases with Mn. Thus the viscoelasticity can in-

crease the momentum boundary layer thickness while

the presence of the magnetic field decreases it. It follows

from (12) or Fig. 2, we know that the magnitude of

dimensionless surface velocity gradient, jf 00ð0Þj ¼ m, in-
creases with the magnetic parameter Mn but decreases

with the viscoelastic parameter K. This implies that the

role played by the viscoelasticity of the second grade

fluid is to reduce the skin friction at the sheet, while the

presence of magnetic field is to increase the power nee-

ded to stretch the sheet.

Our results of dimensionless surface temperature

gradient in the PST case with selected parameters, listed

in Table 1, are compared with those obtained by Vaj-

ravelu and Roper [9] using a numerical method to the

same problem of a non-electrically conducting second

grade fluid and the comparison is in a good agreement.

Obviously, the effect of small Eckert number is to reduce
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and K ¼ 0, a ¼ 0 Pr ¼ 1, Ec ¼ 0:01.
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the heat transfer rate (in absolute sense) from the wall to

the fluid region in the PST case.

In the PST case we plot the dimensionless tempera-

ture profile hðgÞ, as shown in Fig. 3(a) and (b), for

various values of K and Mn, respectively, while other

parameters are fixed. For a given position g, hðgÞ de-

creases as the viscoelastic parameter K increases,

resulting in a decrease of the thermal boundary layer

thickness. However, the decrease in thermal boundary

layer thickness is not appreciable since the viscoelastic

parameter is usually not large and it can be taken as a

small perturbation parameter as done by Rajeswari and

Rathna [19], Beard and Walters [20], etc. It can be ob-

served in Fig. 3(b) that hðgÞ increases with the magnetic

parameter Mn at a given location g; therefore, the

thermal boundary layer thickness will increase with Mn.

The variations of dimensionless temperature distribu-

tion with K and Mn in the PHF case are similar to those

in the PST case, as seen in Fig. 4(a) and (b). Since the

magnitude of the increase of thermal boundary layer

thickness due to the magnetic parameter Mn is more

appreciable than that decreased due to the viscoelastic

parameter K, we can expect that the thermal charac-

teristics are more influenced by Mn than those by K in

this problem.
Table 1

Comparison of dimensionless temperature gradient h0ð0Þ in the PST

selected parameters

Parameters h0ð0Þ
Vajravelu and Roper [9] P

Mn ¼ 0 Pr Ec ¼ 0

K ¼ 0 1 )1.710937 )
a ¼ �1 5 )4.028535 )

K ¼ 1 1 )1.757867 )
a ¼ �1 5 )4.079128 )

K ¼ 1 1 )1.414214 )
a ¼ �1 5 )3.391900 )
The dimensionless surface temperature gradient h0ð0Þ
in the PST case and dimensionless surface temperature

gð0Þ in the PHF case together with their asymptotic re-

sults are tabulated in Tables 2 and 3 for small Ec ¼ 0:2
and a variety of parameters. Apparently, in the PST case,

the larger K, the larger (in absolute sense) the magnitude

of the surface temperature gradient when other para-

meters are fixed. This implies that the viscoelasticity of

the second grade fluid will enhance the heat transfer rate
case between numerical solution [9] and the present study for

resent study Vajravelu and Roper [9] Present study

Ec ¼ 0:02

1.71094 )1.705156 )1.70516
4.02854 )4.010094 )4.01010

1.75787 )1.750994 )1.75099
4.07913 )4.088629 )4.05863

1.41421 )1.406186 )1.40619
3.39190 )3.367179 )3.36718
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Fig. 4. (a) The dimensionless temperature profile (PHF) gðgÞ
for various K and Mn ¼ 0, a ¼ 0, Pr ¼ 1, Ec ¼ 0:01. (b) The

dimensionless temperature profile (PHF) gðgÞ for various Mn

and K ¼ 0, a ¼ 0, Pr ¼ 1, Ec ¼ 0:01.

Table 2

The comparison of exact solution (24) and asymptotic solution (39) o

Parameters h0ð0Þ
a ¼ �0:1 a

Ec ¼ 0:2 Pr Eq. (24) Eq. (39) E

Mn ¼ 0 1 )1.31371 )1.58698
K ¼ 0 10 )4.56184 )4.77311

100 )14.6646 )14.8784 )
500 )32.8665 )33.0801 )

Mn ¼ 0 1 )1.37488 )1.20211 –

K ¼ 1 10 )4.59962 )4.75037
100 )14.6843 )14.8354 )
500 )32.8796 )33.0305 )

Mn ¼ 1 1 )1.11691 )1.50407
K ¼ 0 10 )3.89105 )4.07466

100 )12.0368 )12.2726 )
500 )26.4720 )26.7099 )

Mn ¼ 1 1 )1.18298 )1.50831
K ¼ 1 10 )3.87868 )4.03362

100 )11.9411 )12.1088 )
500 )26.3409 )26.5092 )
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from the wall to the fluid region. We have observed that

the increase of the Prandtl number may also result in an

increase of jh0ð0Þj in the PST case. The magnetic

parameter Mn and the internal heat parameter a may

reduce the values of jh0ð0Þj resulting in a decrease in the

heat transfer rate. It should be noted that, as described in

Subhas and Veena [15] and Vajravelu and Roper [9], the

values of h0ð0Þ are all negative at least in the range of

parameters they considered. Physically, this indicates

that the heat flow is always transferred from the wall

to the fluid. However, if the Eckert number is large

enough, the heat transfer may reverse its direction, as

shown in the last paragraph. From above paragraphs, we

may conclude that the presence of magnetic field will

inhibit the fluid motion in view of the decrease of the

momentum boundary layer thickness and reduce the heat

transfer from wall to the fluid. Conversely, the visco-

elasticity of the second grade fluid may enhance both the

fluid motion and the heat transfer rate at the wall.

As for the surface temperature in the PHF case, we

observe that the increases in Mn and a will increase the

wall temperature gð0Þ, whereas the increases in K and Pr
will reduce it. The missing values in Tables 2 and 3 are

due to the condition 4� 2r þ ar ! 0 is met. The

asymptotic results in both the PST and PHF cases are in

a good agreement when the Prandtl number is greater

than 10. The maximum relative errors are no more than

5% at least for the parameters we considered in two

cases. The larger the Prandtl number, the lesser the

relative error.
f h0ð0Þ, with selected parameters in the PST case

¼ 0 a ¼ 0:1

q. (24) Eq. (39) Eq. (24) Eq. (39)

)1.26667 )1.55535 )1.21562 )1.52320
)4.44726 )4.66548 )4.32933 )4.54484
14.3128 )14.5335 )13.9513 )14.1792
32.0805 )32.3007 )31.2725 )31.4999

– )1.29111 )1.86556
)4.48696 )4.64270 )4.37115 )4.53217
14.3328 )14.4887 )13.9715 )14.1325
32.0931 )32.2488 )31.2848 )31.4455

)1.05451 )1.47250 )0.97415 )1.44036
)3.75932 )3.93735 )3.62247 )3.79182
11.6152 )11.8548 )11.1779 )11.4208
25.5050 )25.7468 )24.4999 )24.7543

)1.13333 )1.47450 )1.07920 )1.44028
)3.74805 )3.90392 )3.61261 )3.76874
11.5144 )11.6849 )11.0715 )11.2445
25.3661 )25.5372 )24.3523 )24.5259



Table 3

The comparison of exact solution (32) and asymptotic solution (41) of gð0Þ, with selected parameters in the PHF case

Parameters gð0Þ
a ¼ �0:1 a ¼ 0 a ¼ 0:1

Ec ¼ 0:2 Pr Eq. (32) Eq. (41) Eq. (32) Eq. (41) Eq. (32) Eq. (41)

Mn ¼ 0 1 0.772523 0.639074 0.800000 0.651988 0.832052 0.665614

K ¼ 0 10 0.273601 0.266340 0.281352 0.273625 0.289711 0.281545

100 0.147368 0.146637 0.152698 0.151918 0.158526 0.157694

500 0.117986 0.117843 0.122954 0.122799 0.128413 0.128248

Mn ¼ 0 1 0.742096 0.875724 – – 0.788006 0.446806

K ¼ 1 10 0.276367 0.270762 0.284146 0.278139 0.292579 0.286127

100 0.149833 0.149281 0.155319 0.154724 0.161312 0.160679

500 0.119317 0.119208 0.124371 0.124254 0.129929 0.129804

Mn ¼ 1 1 0.908300 0.690056 0.955167 0.703902 1.02267 0.718561

K ¼ 0 10 0.397933 0.402150 0.411686 0.417917 0.426823 0.435756

100 0.307067 0.306860 0.319939 0.319777 0.334090 0.333988

500 0.293061 0.293014 0.306512 0.306473 0.321337 0.321307

Mn ¼ 1 1 0.876313 0.687447 0.900000 0.702651 0.938308 0.718610

K ¼ 1 10 0.412923 0.410131 0.427117 0.424542 0.442665 0.440421

100 0.317311 0.316932 0.330801 0.330421 0.345635 0.345259

500 0.298609 0.298532 0.312424 0.312347 0.327665 0.327597

Table 4

The results of h0ð0Þ and gð0Þ with and without the inclusion of the Joule heating for various parameters with K ¼ 0 and a ¼ 0

h0ð0Þ gð0Þ
With Joule heating Without Joule

heating

With Joule heating Without Joule

heating

Ec¼ 0.01

Pr ¼ 1 Mn ¼ 1 )1.20771 )1.21040 0.829154 0.826944

Mn ¼ 10 )0.744125 )0.758077 1.33083 1.31279

Pr ¼ 10 Mn ¼ 1 )4.64367 )4.65918 0.223134 0.219826

Mn ¼ 10 )3.95763 )4.06015 0.291231 0.266664

Pr ¼ 100 Mn ¼ 1 )15.4095 )15.4761 0.0768584 0.0725938

Mn ¼ 10 )13.9859 )14.5305 0.141692 0.105693

Ec¼ 0.1

Pr ¼ 1 Mn ¼ 1 )1.13514 )1.16202 0.888844 0.866737

Mn ¼ 10 )0.480443 )0.619953 1.167177 1.49138

Pr ¼ 10 Mn ¼ 10 )4.22477 )4.37992 0.312448 0.279368

Mn ¼ 10 )2.02012 )3.04526 0.755538 0.509873

Pr ¼ 100 Mn ¼ 1 )13.6122 )14.2779 0.192002 0.149356

Mn ¼ 10 )3.69219 )9.1386 0.822059 0.462076
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Now, we examine the effects of the inclusion of Joule

heating in this boundary layer flow problem by com-

paring the corresponding values given in Table 4. When

the Joule heating is taken into account, the values of

jh0ð0Þj in the PST case are reduced and the values of gð0Þ
in the PHF case are increased. The effects of Joule

heating on the thermal characteristics at the wall are

magnified when Ec becomes large in view of the relative

differences between the corresponding values of h0ð0Þ
and gð0Þ, respectively. Since the heat generated due to
the Joule heating and the total heat, except for internal

heat generation or absorption, produced in the fluid

region are characterized by Mn and Ec, respectively.

Thus the temperature in the fluid region can be raised to

reduce the heat transfer rate from the wall to the fluid

region in the PST case and to increase the surface tem-

perature in the PHF case when Ec and/or Mn are large.

Since the previous authors [7,9,13,15] did not focus on

the case when the amount of heat generated in the fluid

region is large, i.e. the Eckert number is large, either they



Table 5

The thermal characteristics h0ð0Þ and gð0Þ at the wall with Ec, Mn and Pr when K ¼ 1, a ¼ 0

h0ð0Þ Pr ¼ 1 Pr ¼ 10 Pr ¼ 25 Pr ¼ 100 Pr ¼ 500 Pr ¼ 1000

Mn ¼ 1 Ec ¼ 0:1 )1.23333 )4.27246 )6.79699 )13.6132 )30.4019 )42.9708
Ec ¼ 0:7 )0.63333 )1.12598 )1.09012 )1.02057 )0.18712 0.512362

Ec ¼ 0:8 )0.53333 )0.60156 )0.25564 1.0782 4.84867 7.75956

Ec ¼ 1:0 )0.33333 0.44726 1.61331 5.27574 14.9203 22.254

Ec ¼ 1:5 0.16667 3.06933 6.2857 15.7696 40.0992 58.4899

Mn ¼ 10 Ec ¼ 0:1 )0.59708 )1.83961 )2.33051 )2.76938 )2.45123 )1.90274
Ec ¼ 0:2 )1.88413 0.763308 2.72643 9.83738 30.2036 46.0819

Ec ¼ 0:3 0.20226 3.36622 7.78337 22.4442 62.8584 94.0665

gð0Þ Pr ¼ 1 Pr ¼ 10 Pr ¼ 25 Pr ¼ 100 Pr ¼ 500 Pr ¼ 1000

Mn ¼ 1 Ec ¼ 0:1 0.825 0.317799 0.250208 0.197224 0.170321 0.164228

Ec ¼ 0:7 1.275 0.973738 0.97541 0.998691 1.02294 1.03012

Ec ¼ 0:8 1.35 1.08306 1.09628 1.13227 1.16504 1.17443

Ec ¼ 1:0 1.5 1.30171 1.33801 1.39942 1. 44925 1.46306

Ec ¼ 2:0 2.25 2.39495 2.54668 2.7352 2.87028 2.90621

Mn ¼ 10 Ec ¼ 0:1 1.43405 0.811007 0.819896 0.884927 0.958662 0.981904

Ec ¼ 0:2 1.8369 1.39692 1.50443 1.70482 1.88884 1.94376

Ec ¼ 0:3 2.23976 1.98283 2.18896 2.52471 2.81901 2.90562
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concluded that the heat flow always transfers from the

wall to the fluid region or they implicitly showed this

result in their figures or tables, or they did not consider

the magnetic effects in this heat transfer problem. Some

results regarding the effects of Ec, Mn and Pr on the

thermal characteristics h0ð0Þ and gð0Þ are listed in Table

5. We observed that when Ec is small, the value of jh0ð0Þj
is negative and decreases more negatively with Pr,
implying that the heat transfer rate from wall to the fluid

increases with Pr since the thermal boundary layer

thickness decreases with Pr. When Ec is large enough, for
example Ec ¼ 1:0 and Mn ¼ 1, the value of h0ð0Þ is

)0.333333 at Pr ¼ 1 and increases to 22.254 at Pr ¼ 1000.

However, h0ð0Þ becomes positive at Pr ¼ 1 and increases

more positively for Ec ¼ 1:5. This phenomenon is mainly

due to the fact that the amount of heat generated in the

fluid region is large enough so that the fluid temperature

near the wall is higher than that at the wall, resulting in a

heat flow from the fluid region to the wall ðh0ð0Þ > 0Þ.
This situation is more magnified when the Prandtl

number is large because the thermal boundary layer

thickness will be compressed ðdT � 1=
ffiffiffiffiffi
Pr

p
Þ. Thus, it can

be expected that when Ec is intermediate, for example

Ec ¼ 0:7, the value of h0ð0Þ is negative first and then

decreases to a minimum and finally increases to a positive

value with Pr, as shown in Table 5. This behavior can

also be observed for Mn ¼ 10, which corresponds to

more heat generated in the fluid region, therefore, h0ð0Þ
becomes a positive value at about Ec ¼ 0:3 rather than at

about Ec ¼ 1:5 for Mn ¼ 1. Apparently the surface

temperature gð0Þ in the PHF case will increase with Ec
irrespective of Pr according to our physical argument. It

is, therefore, straightforward that both the values of h0ð0Þ
and gð0Þ will increase with the internal heat parameter a
and magnetic parameter Mn. The above results are

similar to those of Liu [21] for the same problem of a

conducting viscoelastic fluid.
5. Conclusions

The velocity profile is strongly dependent on the

viscoelastic parameter K as well as the magnetic

parameter Mn. In the PST case, the increases of K and

Pr will result in an increase in jðh0ð0Þj when Ec is small,

however, the increases of Mn and a will decrease it.

When Ec is not small, the heat may flow from the fluid

region to the wall in contrast to the case when Ec is

small. A physical argument is proposed for this behav-

ior. The values of gð0Þ in the PHF case will decrease as

the parameters K and Pr increase, and will increase as

Mn and a increase. The inclusion of the Joule heating

could significantly influence the thermal characteristics

at the wall than that without it. Beyond the Pra-

ndtl number 10, the asymptotic solutions give good

approximations of the thermal characteristics at the wall

for Ec ¼ 0:2 within the relative error 5%. The larger the

Prandtl number, the lesser the relative error.
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